NDEngineer's Idea / Prospect

The Overlooked Necessity: How Engineering in Some Fields Has Fallen Behind Despite the Urgent Need for Innovation


This article is a continuation of following article Engineering fields where innovation is urgently needed but often overlooked: Engineering fields where Need For Innovation Indeed




In an age where technological innovation drives global progress, engineering has played a pivotal role in transforming industries, economies, and even societies. Yet, despite the apparent necessity, certain branches of engineering remain overlooked, leaving gaps in fields that desperately need advancement. This article explores why engineering has been missed in some faculties and how this neglect has hindered essential innovation, even in industries that stand to benefit most.

1. The Critical Role of Engineering in Innovation

Engineering, by nature, is the backbone of problem-solving in modern society. Engineers design, optimize, and innovate the tools and systems that make daily life efficient and sustainable. Whether it’s in healthcare, transportation, manufacturing, or renewable energy, engineering innovations bring about radical improvements.

However, while sectors like aerospace, IT, and biomedical engineering have seen enormous advances, other critical fields have lagged behind. The reasons for this are multi-faceted, and understanding them requires a deep dive into the factors that drive engineering development—or impede it.

2. Underfunding and Resource Allocation Issues

One of the primary reasons engineering in certain faculties has been missed is due to the uneven distribution of resources and funding. Fields like artificial intelligence, robotics, and computer science tend to attract more funding from both governments and private investors due to their high visibility and profit potential. On the other hand, critical yet less glamorous fields like civil infrastructure, environmental engineering, or agricultural technology often receive fewer resources, despite their profound societal impact.

For example, in many parts of the world, infrastructure is crumbling under the weight of time and environmental stressors, yet civil engineering faculties have not seen the same level of financial investment as the tech industry. This creates a paradox where the fields in dire need of innovation are often starved of the resources to facilitate that innovation.

3. Lack of Cross-Disciplinary Collaboration

Another reason for the neglect is the growing compartmentalization of engineering disciplines. Innovation in fields like sustainable agriculture or environmental conservation requires collaboration between environmental scientists, civil engineers, and even software engineers to create smart systems. Unfortunately, traditional academic structures often silo these faculties, making cross-disciplinary innovation more challenging.

For example, agricultural engineering—an essential field to solve global food insecurity and environmental degradation—requires knowledge from both biological sciences and mechanical engineering. However, limited collaboration across these disciplines can slow the development of effective technologies.

4. Perception and Prestige Bias

Prestige plays a significant role in driving students and funding toward certain fields. Engineering faculties associated with cutting-edge technology, like AI or nanotechnology, are often seen as more prestigious or exciting, attracting the brightest minds and most significant funding. Fields like chemical engineering, civil engineering, or even mining engineering can sometimes be perceived as outdated or less exciting, even though they are critical to solving large-scale global challenges like resource depletion, climate change, and infrastructure development.

This perception bias can create a feedback loop where less innovation occurs because fewer minds and resources are focused on the problem, further entrenching the perception that the field is stagnating.

5. Societal and Political Influences

In some cases, societal or political factors hinder engineering progress in critical fields. For example, environmental engineering, which is crucial in addressing climate change, often faces political and public resistance. Climate policies that support innovation in renewable energy, sustainable construction, or waste management can be hampered by short-term political and economic interests. Similarly, public infrastructures like roads, bridges, and public transport systems tend to suffer from underinvestment due to political cycles that prioritize more immediate, visible gains over long-term planning.

This misalignment between societal needs and political agendas can leave essential engineering faculties starved of the attention they deserve.

6. Consequences of Missed Innovation

The neglect of engineering in some faculties has had tangible consequences. For example, inadequate infrastructure and outdated water management systems in many developing nations exacerbate issues like urban flooding, water scarcity, and pollution. Meanwhile, the absence of advanced agricultural engineering in regions facing food insecurity prevents the development of innovative farming technologies that could revolutionize crop yields and resource use.

In healthcare, the missed opportunity in fields like biomedical and biomechanical engineering in certain regions means that affordable, cutting-edge medical devices and technologies remain inaccessible to many populations, even though the need for such innovation is pressing.

7. Strategies for Addressing the Gap

Addressing the gaps in overlooked engineering faculties requires a multifaceted approach:

  • Balanced Funding Allocation: Governments, private investors, and educational institutions must reassess funding models to ensure that underfunded but critical faculties receive appropriate financial resources. Public investment in infrastructure, for instance, should be aligned with long-term sustainability and innovation.

  • Encouraging Cross-Disciplinary Work: Universities should promote collaboration between engineering faculties and other scientific fields. Cross-disciplinary research centers can help facilitate the innovation needed to address complex, global challenges.

  • Rethinking Engineering Education: Schools and universities should reframe how they present less glamorous fields of engineering, emphasizing their critical importance and the exciting potential for real-world impact. This shift could help attract more students to fields that need innovation the most.

  • Policy Alignment: Policymakers must align public funding and policy incentives with long-term infrastructural and environmental goals. Prioritizing investments in sustainable development, for instance, would ensure that engineering innovations in these fields receive the support they need.

Conclusion

In conclusion, while engineering has fueled much of the technological progress of the modern world, critical faculties have been overlooked, even though innovation in those fields is desperately needed. From civil infrastructure to agricultural technology, missed opportunities have led to stagnation in some areas, despite the increasing urgency of the challenges these fields face.

As we move forward, balanced resource allocation, cross-disciplinary collaboration, and societal recognition of the value of these fields will be essential to ensuring that engineering can meet the diverse and pressing needs of the 21st century. Without this attention, we risk not only falling behind in innovation but also failing to solve the global challenges that will shape our future.

In recent past years world have seen  very fast paced engineering innovation how ever innovation happened into very particular engineering fields  weather some very crucial engineering fields has been overlooked. here just some reference that i think overlooked Engineering fields where innovation is urgently needed but often overlooked with some examples and hypothesis. 



1. Civil Engineering
  • Missed Innovation Example: Aging infrastructure (roads, bridges, dams) in many developed and developing nations remains outdated and unsafe. Technologies for sustainable, earthquake-resistant buildings or smart urban infrastructure (integrated with IoT) are underdeveloped in many regions.
  • Need for Innovation:
    • Smart cities with energy-efficient, sustainable infrastructure.
    • Green construction technologies that reduce the environmental impact of building materials.
    • Resilient infrastructure to withstand climate change-induced challenges such as flooding and extreme weather.
  • Consequences:
    • Deteriorating infrastructure, leading to increased maintenance costs, accidents, and failures (e.g., bridge collapses, unsafe buildings).
    • Inadequate urban planning results in traffic congestion, pollution, and poor living conditions.
    • Lack of sustainable and resilient construction exacerbates the impact of natural disasters like earthquakes, floods, and hurricanes.
2. Agricultural Engineering
  • Missed Innovation Example: Despite growing food insecurity, many areas lack investment in precision farming technologies, such as automated irrigation systems or drones for crop monitoring. Developing countries, in particular, have missed the opportunity to advance farming practices that could increase food production with limited resources.
  • Need for Innovation:
    • Automation in agriculture: robotics and AI-driven machines for planting, harvesting, and monitoring crops.
    • Water-efficient farming: innovative irrigation technologies to maximize water usage in drought-prone areas.
    • Climate-resilient agriculture: designing farming systems that can withstand changing weather patterns and environmental stressors.
  • Consequences:
    • Increased food insecurity and reduced agricultural productivity due to inefficient farming practices.
    • Overuse of water and land resources leading to soil degradation, deforestation, and biodiversity loss.
    • Vulnerability to climate change as farming systems are not equipped to handle changing weather patterns and environmental stresses.
3. Environmental Engineering
  • Missed Innovation Example: The management of wastewater and air pollution is still suboptimal in many urban areas, especially in developing countries. Technologies for efficient water recycling, waste-to-energy plants, or air purification systems have not been widely adopted, even though they are needed to fight pollution and climate change.
  • Need for Innovation:
    • Water treatment systems: advanced filtration and purification technologies to ensure clean water supplies.
    • Sustainable waste management: converting waste into renewable energy sources or biodegradable materials.
    • Air quality improvement: scalable technologies to reduce carbon emissions and particulate matter in urban environments.
  • Consequences:
    • Worsening pollution levels (water, air, and soil), leading to public health crises such as respiratory diseases and contaminated drinking water.
    • Insufficient waste management leads to increased landfills, environmental degradation, and lost opportunities for recycling or energy recovery.
    • Poor climate resilience exacerbates the effects of climate change, such as rising sea levels, extreme weather events, and global warming.
4. Mining and Metallurgical Engineering
  • Missed Innovation Example: Mining practices in many countries continue to rely on traditional, destructive methods that cause significant environmental harm. Technologies for more sustainable resource extraction, such as using bio-leaching or automated mining systems, have not been fully implemented.
  • Need for Innovation:
    • Sustainable mining: reduced environmental impact and more efficient resource extraction processes.
    • Mineral recycling technologies: reclaiming valuable materials from industrial waste.
    • Energy-efficient smelting and refining processes to reduce emissions and lower the energy consumption in metallurgical operations.
  • Consequences:
    • Unsustainable mining practices result in environmental destruction, including deforestation, water contamination, and habitat loss.
    • Depletion of non-renewable resources without the development of more sustainable extraction or recycling technologies.
    • Increased carbon emissions and energy waste in metallurgical processes due to outdated technologies.
5. Transportation Engineering
  • Missed Innovation Example: Public transportation systems in many cities remain outdated, underfunded, and inefficient. The integration of electric buses, autonomous vehicles, or hyperloop systems is still rare, even though these technologies could significantly reduce urban congestion and carbon emissions.
  • Need for Innovation:
    • Autonomous transport systems: self-driving cars and public transportation that reduces traffic accidents and increases efficiency.
    • Electric and sustainable transportation: expansion of electric vehicle infrastructure (charging stations, smart grids) and the use of green energy in transportation networks.
    • High-speed rail and hyperloop: developing rapid, sustainable intercity transportation systems.
  • Consequences:
    • Growing urban congestion and traffic-related air pollution, contributing to public health issues and economic losses.
    • Increased reliance on fossil fuels due to inadequate development of electric and sustainable transportation systems, worsening climate change.
    • Lack of effective public transportation results in social inequality, as low-income populations suffer from limited access to affordable transport.
6. Water Resources Engineering
  • Missed Innovation Example: In many regions, especially in developing countries, water distribution systems are inefficient, leading to significant water loss through leaks. Additionally, technologies for drought management, such as large-scale water desalination or smart water grids, are still underdeveloped.
  • Need for Innovation:
    • Smart water management systems: sensors, AI, and IoT-based systems that optimize water distribution and reduce wastage.
    • Desalination technologies: energy-efficient systems for converting seawater into freshwater.
    • Flood prevention: designing advanced flood management systems to control and mitigate urban flooding caused by climate change.
  • Consequences:
    • Water scarcity and inefficient use of water resources, particularly in drought-prone regions, leading to social unrest and economic disruption.
    • Urban flooding and poor stormwater management causing property damage, displacement, and increased mortality rates in vulnerable areas.
    • Insufficient access to clean water, contributing to waterborne diseases and exacerbating public health challenges in developing regions.
7. Textile Engineering
  • Missed Innovation Example: The textile industry is one of the most resource-intensive sectors, yet innovations in sustainable fabrics and environmentally friendly production processes are still limited. Fast fashion continues to contribute to significant waste and pollution.
  • Need for Innovation:
    • Eco-friendly textiles: developing biodegradable or recyclable fabrics that reduce environmental impact.
    • Waterless dyeing technologies: reducing the massive water consumption and chemical use in fabric production.
    • Circular textile economy: designing clothes that are easy to recycle or repurpose, reducing textile waste in landfills.
  • Consequences:
    • Massive environmental pollution due to toxic chemicals used in dyeing processes and large-scale textile waste from fast fashion.
    • Over-exploitation of natural resources, such as water and cotton, leading to ecological degradation.
    • Missed opportunities for a circular economy in the textile sector, contributing to a growing waste crisis as millions of tons of textiles are sent to landfills each year.
8. Biomedical Engineering
  • Missed Innovation Example: In many regions, especially developing countries, there is a lack of affordable medical devices or prosthetics that are accessible to those in need. Technologies for low-cost, 3D-printed medical devices could revolutionize healthcare but remain underdeveloped in underserved markets.
  • Need for Innovation:
    • Affordable diagnostics: low-cost medical imaging and diagnostic devices for remote or low-income areas.
    • Wearable health tech: biosensors and smart devices that monitor health conditions in real time.
    • 3D-printed prosthetics and implants: affordable and customizable solutions for those who need prosthetic limbs or medical implants.
  • Consequences:
    • Lack of affordable, accessible medical technologies results in unequal access to healthcare, particularly in low-income regions.
    • Missed opportunities to develop life-saving devices or treatments, such as affordable prosthetics or advanced diagnostic tools, which could improve quality of life.
    • Overburdened healthcare systems, unable to cope with increasing demand for effective, low-cost medical solutions.
9. Chemical Engineering
  • Missed Innovation Example: The production of plastics and other petroleum-based chemicals remains largely unsustainable, contributing to massive environmental degradation. Innovations in biodegradable plastics or carbon capture technologies in chemical processes are still insufficiently developed.
  • Need for Innovation:
    • Green chemistry: developing sustainable processes for producing chemicals with minimal environmental impact.
    • Carbon capture and utilization: technologies to capture CO₂ emissions from chemical plants and repurpose them.
    • Biodegradable materials: alternatives to plastics and other harmful materials, reducing pollution and improving waste management.
  • Consequences:
    • Continued reliance on non-biodegradable plastics and harmful chemicals contributes to environmental degradation, particularly ocean pollution and microplastic accumulation.
    • Higher levels of industrial emissions, leading to global warming and severe health impacts due to air pollution.
    • Missed opportunities for developing sustainable chemical processes, hindering progress toward reducing the carbon footprint of industries.
10. Energy Engineering
  • Missed Innovation Example: Although there is global recognition of the need for clean energy, many regions continue to rely on outdated, fossil-fuel-based energy systems. Innovations in energy storage, grid management, and renewable energy infrastructure are often underfunded or underdeveloped in critical areas.
  • Need for Innovation:
    • Energy storage solutions: efficient batteries and storage technologies to support renewable energy use.
    • Smart grids: intelligent, flexible energy distribution systems to accommodate renewable sources like solar and wind.
    • Sustainable energy generation: scaling up of renewable energy projects, especially in regions heavily dependent on coal or oil.
  • Consequences:
    • Continued dependence on fossil fuels results in worsening climate change, environmental degradation, and geopolitical conflicts over oil and gas resources.
    • Energy poverty in remote or underdeveloped regions due to a lack of innovation in affordable and decentralized renewable energy systems.
    • Unstable energy grids that cannot integrate renewable energy sources efficiently, leading to blackouts and unreliable energy supplies.

Overall Societal and Environmental Impact

  • Economic stagnation: Missed engineering innovation leads to inefficiencies, higher costs, and lost economic opportunities in key industries such as agriculture, manufacturing, and energy.
  • Social inequality: Uneven access to modern technologies and solutions disproportionately affects low-income populations, creating deeper societal divides.
  • Environmental degradation: The lack of sustainable technologies exacerbates issues such as climate change, resource depletion, and biodiversity loss, threatening global ecosystems and the well-being of future generations.

By missing innovations in these critical engineering fields, society risks falling behind on addressing some of the most pressing challenges of our time, from food security and climate change to health access and sustainable infrastructure. These areas deserve greater attention, investment, and cross-disciplinary collaboration to drive the necessary changes.


if you are interested in possible cause and solution of this issue follow the link  below for related article.

The Overlooked Necessity: How Engineering in Some Fields Has Fallen Behind Despite the Urgent Need for Innovation

 





  • On the Role of Failure in Engineering:
    "Failures appear to be inevitable in the wake of prolonged success, which encourages lower margins of safety. Failures, in turn, lead to greater safety margins and hence new periods of success."
    Henry Petroski, "To Engineer Is Human"

  • On the Evolution and Future of Civil Engineering:
    "The past achievements in civil engineering provide a solid foundation, but the future requires engineers to adapt, innovate, and apply systems thinking to solve the complex challenges of tomorrow."
    Samuel Labi, "Introduction to Civil Engineering Systems"

  • On Experimentation in Civil Engineering:
    "Civil engineers must not just follow the rules but innovate through experimentation to uncover new solutions to persistent challenges, ensuring that the designs of today inspire the achievements of tomorrow."
    Francis J. Hopcroft & Abigail J. Charest, "Experiment Design for Civil Engineering"

  • On the Importance of Design and Adaptation:
    "Design is getting from here to there—an essential process of revision, adaptation, and problem-solving that keeps civil engineering at the forefront of societal development."
    Henry Petroski, "To Engineer Is Human"

  • On Engineering's Human Aspect:
    "Engineering is not just about machines and structures; it is fundamentally about improving the human experience through thoughtful and sustainable design."
    Henry Petroski, "To Engineer Is Human"

  • On Learning from Mistakes:
    "Success is built on the ability to foresee and prevent failure. Every failure in design is a lesson that helps engineers push the boundaries of what’s possible."
    Henry Petroski, "To Engineer Is Human"

  • On the Importance of Systems Thinking:
    "Civil engineering systems must be developed with foresight, understanding that today’s solutions must be adaptable to the changing demands of tomorrow."
    Samuel Labi, "Introduction to Civil Engineering Systems"

  • On the Balance of Innovation and Safety:
    "Engineers walk the fine line between bold innovation and meticulous safety, ensuring that each new idea contributes to progress without compromising security."
    Michael R. Lindeburg, "Civil Engineering Reference Manual for the PE Exam"

  • On Sustainable Materials:
    "Sustainability in civil engineering materials is not just a trend; it's a responsibility to ensure that what we build today does not hinder the possibilities of tomorrow."
    Kathryn E. Schulte Grahame et al., "Essentials of Civil Engineering Materials"


    These quotes emphasize the balance of creativity, safety, and continuous improvement in civil engineering, inspiring professionals to push boundaries while learning from both successes and failures.

Archives